

Understanding Alzheimer's Disease and the Dementias: What We Know, What We Can Do

Barry Gordon, M.D., Ph.D.

Therapeutic Cognitive Neuroscience Professor, Professor of Neurology and Cognitive Science

Founder and Former Director, The Memory Clinic

The Johns Hopkins Medical Institutions

Smithsonian Associates – February 3, 2026

Disclaimer

- Dr. Gordon is a paid speaker for the Smithsonian Associates. All opinions expressed and implied in this presentation are solely those of Dr. Gordon.
- The content of the presentation does not represent nor reflect the views of the Johns Hopkins University nor The Johns Hopkins Medical Institutions.

Q & A

- I will welcome questions.
- However, for legal and many other reasons, I cannot offer specific advice, even about 'close personal friends.'

Handout available

- A pdf version of this presentation (except for material from outside sources, and late changes) is available through the chatbox.

For Your Education Only!

- The matters I am going to discuss are vast, complex, incompletely understood, and often hotly debated. My presentation is not intended to be comprehensive, nor could it possibly be.
- None of what I am going to say (or what you may think I say) should be interpreted as specific medical advice. It is only intended to better inform about these topics and issues.

Dementia prevalence*

- Age 65-75: ~ 5%
- Age 85 up: ~ 30%+ or more
- * These numbers are very approximate; definitions and estimates vary considerably

Dementia

- Is the person's **condition**, not a specific disease
- (In medical terms, a “syndrome,” not a “specific diagnosis”)
- The dementia condition is what is wrong with their behavior, not necessarily what is causing their behavior to be wrong

Dementia

Many definitions. The one I'll use:

- Decline from prior status in
- Two or more ‘different’ mental functions
('different' brain regions)
- “Severe” in some fashion
- Has lasted at least 6 months

Two or more “different” mental functions

- “Different” : produced by different brain regions (more than one)
- E.g.:
 - memory and speech production
 - judgment
 - personality

Mental Functions: Anything coming from the brain

- Memory
- Speech (e.g., word-finding)
- Vision, spatial awareness
- Judgment
 - Including self-awareness of one's own abilities/disabilities
- Personality – Exaggeration, Change
- ...[everything else, positive and negative].....

Mental Functions affected

- Most commonly
 - Memory
 - Forgetting recent events (“short-term”), but not older (“long-term”)
 - Speech (e.g., word-finding)
 - judgment (e.g., not being aware of their own problems)
- But that's because these are the ones most commonly affected by the most common underlying diseases, e.g., Alzheimer's disease
- Other diseases causing dementia may have different early manifestations (e.g., Frontotemporal dementias → profound speech impairments, personality changes)

‘Different’ Mental functions (other examples)

- Vision – e.g., recognizing your own car, hotel room
- Judgment (e.g., with telemarketers)
- Reasoning ability
- Everyday skills (e.g., driving)
- Personality
- Manual skills (e.g., using the remote control, tools)
- Delusions, hallucinations, paranoia

“Severe” in some fashion

- Different definitions (and some descriptive names attached to ranges of scores in the MiniMental and the MoCA)
- In general:
 - For things people don't usually forget
 - Frequent
 - Can't be cued or reminded

“Severe”?

- “Normal” memory and mental functions can have the same kinds of problems, to some extent
 - Forgetting that a boiling pot is on the stove
 - Where you parked your car
 - “bad days” of moodiness, irritability
- Difference is in degree x frequency x repairability (cued or reminded)

Has lasted at least 6 months

- Some relatively temporary conditions can depress and impair mental functions, e.g.
 - Operations, anesthesia
 - Illnesses (e.g., UTIs)
 - Sedative drugs, sleeping pills, other medications. alcohol
 - Depression (“pseudo-dementia”)
 - But can also be a precursor of true dementia

Onset and progression

- Onset is usually gradual (months to years) and often imperceptible
 - But can seem to appear suddenly (e.g., after an illness or operation, or change in circumstances such as a move)
- There is typically **progression** (worsening) over time
 - typically from year-to-year, at least at onset

Mild Cognitive Impairment (MCI)

- Definition (varied, somewhat imprecise):
 - Subjective complaints
 - Some evidence of memory or other problems
 - But problems not severe enough to interfere with everyday life
 - Last ≥ 3 months

Mild Cognitive Impairment (MCI)

- At risk for developing dementia, but not necessarily do so
- Some people diagnosed with MCI get better (no longer qualify for diagnosis) after 1 year

**Specific (single, on their own)
conditions causing dementia**

Individual Causes of dementia

- Alzheimer's disease
- LATE syndrome
- Vascular dementia
- Frontotemporal dementias
- Lewy Body Dementia/Parkinson's dementia
- ...[many others]...

Alzheimer's Disease

- “typical” or “textbook” example
- Imperceptible onset
- Initially, progresses gradually over several years
- Typically, memory, thinking (e.g., comprehension), and self-awareness

What is wrong in the brain

- Loss of nerve cells
- Amyloid plaques
- Neurofibrillary tangles

Basic cause(s)?

- Far from certain, but popular hypothesis: build up of toxic protein fragments (AB42)
- Current attempts to remove these fragments using antibodies
 - **Lecanemab** (brand name **Leqembi**), **Donanemab** (brand name **Kisunla**)
 - Some success, but also appreciable toxicity in some
- Some have argued for different basis or bases (e.g., tau protein)

Individual Causes of dementia

- Alzheimer's disease
- LATE syndrome
- Vascular dementia
- Frontotemporal dementias
- Lewy Body Dementia/Parkinson's dementia
- ...[many others]...

LATE syndrome

- Limbic-predominant age-related TDP-43 encephalopathy
- Perhaps as many as 1/5 of those who had been thought to have Alzheimer's disease (AD)
- Typically slower and milder than typical AD (when it occurs by itself)

Individual Causes of dementia

- Alzheimer's disease
- LATE syndrome
- Vascular dementia
- Frontotemporal dementias
- Lewy Body Dementia/Parkinson's dementia
-

Vascular dementia

- Diseases in the blood vessels can damage the brain directly, and also indirectly reduce its essential supplies of oxygen and glucose (fuel)
 - Multiple large strokes
 - Multiple small strokes (lacunes)

Individual Causes of dementia

- Frontotemporal dementias (FTD)
- Lewy Body Dementia/Parkinson's dementia
 - Synucleopathy
- Normal Pressure Hydrocephalus
- Crueutzfeld-Jacob disease and variants
 - Prion disease
- *Dozens of others....*

Initial symptoms and signs may be different than classical Alzheimer's disease, e.g.:

- Marked fluctuations
- Personality changes
- Motor signs (masked looks, tremor,
slowness of motion)

But Alzheimer's disease...

- Can also present and behave atypically, e.g.
 - with pronounced speech problems (“Progressive aphasia”)
 - With pronounced visual problems (“cortical blindness”)
 - Etc.

Furthermore...

- Any of these conditions can occur at the same time
- In older individuals, it is common for more than one dementia-causing disease to be present (multiple diagnosis)
 - (cause for hope – I'll explain!)

What can the medical diagnostic process look like?

- Reasonable suspicion of dementia
- History
 - Very important
 - What were the first signs?
 - What has happened since?

Mental status exam (part of the physical exam)

- Brief (10-15 minutes)
 - Abbreviated memory tests
 - MiniMental State Examination (MMSE) (Folstein et al., 1975)
 - Montreal Cognitive Assessment (MoCA)
(<https://mocacognition.com/>)
- Full neuropsychologic testing (2 hours and up)

Clinical diagnosis (cont'd)

- Physical exam to look for e.g., bradycardia, congestive heart failure, orthostatic hypotension, etc.
- Neurologic exam to look for evidence of stroke, Parkinson's disease
- Lab tests to rule out other conditions (thyroid disease, renal disease, B12 deficiency, etc.)

Clinical diagnosis (cont'd)

- CT/MRI brain – to look for other problems
- Blood test(s)
 - *Lumipulse (Lumipulse G pTau217/β-Amyloid 1-42 Plasma Ratio)* – for positive diagnosis
 - *Elecsys® pTau181* – more to rule out Alzheimer's
 - Both are intended for symptomatic adults (>=55)
- Amyloid PET scan – reference standard
 - But >20% of individuals can have positive scans, without clinical evidence of Alzheimer's disease

End result(s)

- Make diagnosis of Alzheimer's Disease more or less likely
- Make other diagnoses more or less likely
- Rule out conditions that could be contributing to mental (cognitive and behavioral) impairments
- Basis for a rational treatment plan

POSSIBLE TREATMENTS

- Reduce if possible other contributing factors
- Current drug treatment(s)
 - **Lecanemab** (brand name **Leqembi**), **Donanemab** (brand name **Kisunla**)
- Behavioral and lifestyle changes
- (Implications for family members – genetic, others)

So, in theory beneficial for someone to be medically evaluated for dementia

- If other individuals think something is wrong, chances that something is truly wrong are high
- What is wrong may not be a dementia *per se*
 - *E.g., depression, sedative drug effects, alcohol, etc.*
- Beneficial to detect problems early, as still might be reversible, or modifiable

But....

- Still risky to suggest that there is a problem and that a person should get a professional evaluation:
 - Ordinary situations often don't unambiguously expose mild dementia, even for professionals
 - May not strain critical mental abilities
 - People cover up deficits
 - Deficits can have other very plausible explanations
 - Social poise and skills often maintained
- Raising possibility socially awkward (at the very least)

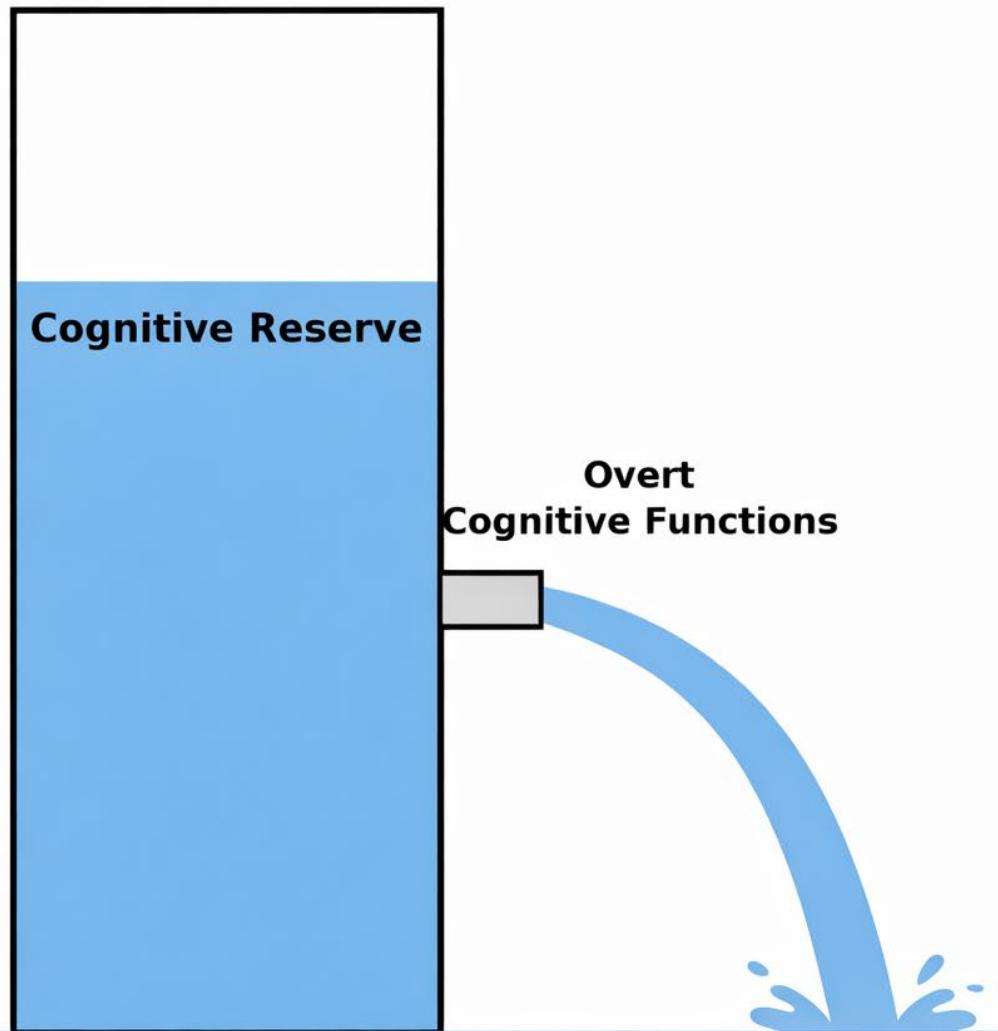
...In part as a result

- In AD, average time from suspicion to diagnosis: 3 years
 - Note: some interval may be necessary to confirm progression
- Many individuals with dementia not brought to medical attention for a considerable time, if ever (and if they are brought to attention, often because of some significant event (e.g., getting lost))

Prevention?

- If you're not currently demented, what might you do to decrease your chances?
- Some old and some recent findings suggest there are some possibilities.

Facts or possibilities that might be exploited


- Dementing diseases gradually worsening 10-20 years before overt dementia
- Many (20-40%?) overt dementias are due to the presence of two or more brain diseases
 - Particularly true for dementia occurring in those 85+ (“oldest old”)

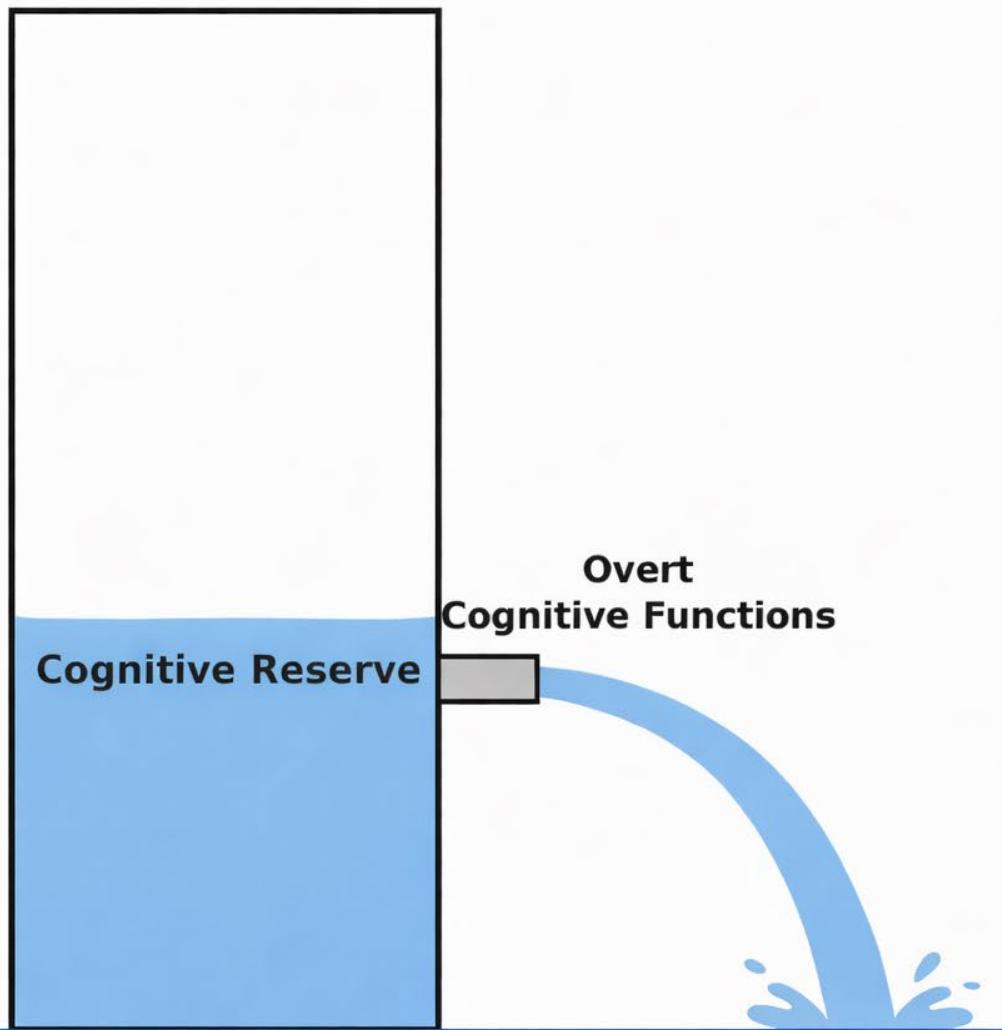
Facts or possibilities that might be exploited

- Some of brain diseases might be mitigated by our actions
 - Small blood vessel disease (short of vascular dementia)
 - Accelerated by hypertension, diabetes, hypercholesterolemia, etc.
 - “cellular health” (“mitochondrial health”)?
 - Exercise might boost this in the brain, as well as in the muscles
 - Others (e.g., microglial function)

Facts or possibilities that might be exploited (cont'd)

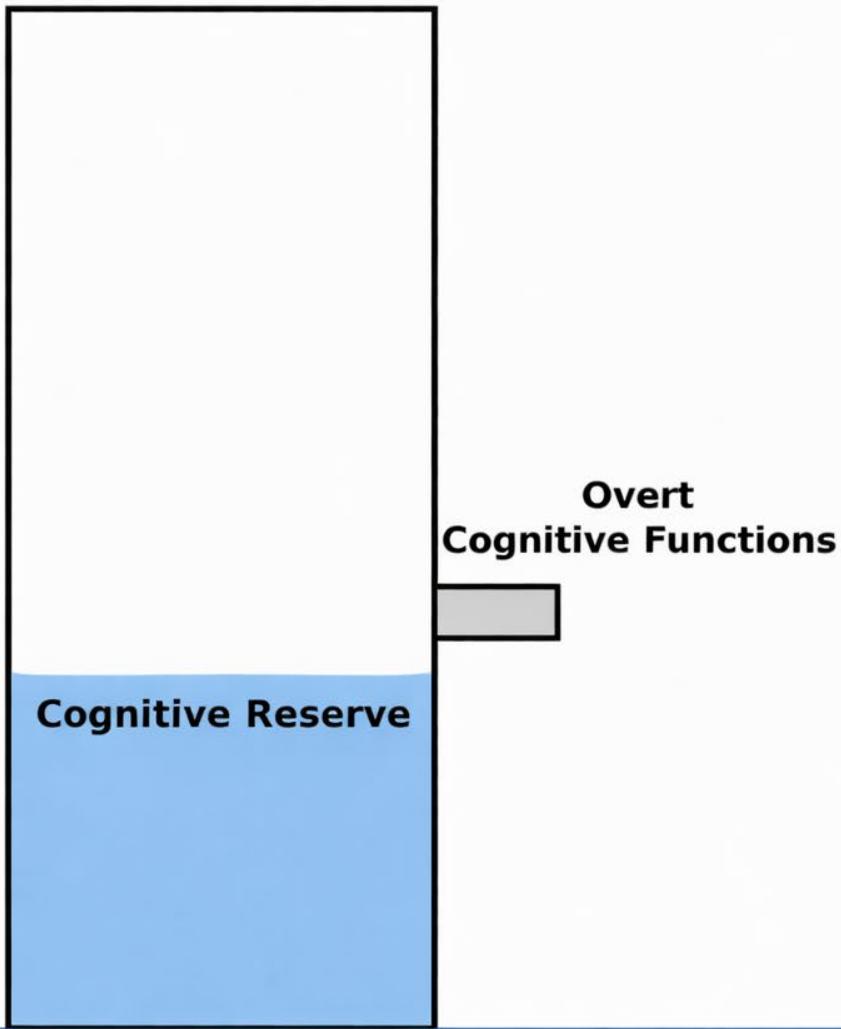
- There might be a “cognitive reserve” (excess capacity) for brain functioning

00:00 / 00:10



Facts or possibilities that might be exploited (cont'd)

- There might be a “cognitive reserve” (excess capacity) for brain functioning
 - True for kidney functioning, liver functioning
 - Suspected but not yet proven for the brain


Facts or possibilities that might be exploited (cont'd)

- Therefore, if a modifiable condition can be mitigated enough, a person might be able to prevent his/her cognitive abilities from falling below a threshold (becoming overtly demented).

00:00 / 00:10

00:00 / 00:10

**Someone getting older, and
concerned for the future**

The action plan:

- Are you getting demented?
- What is your risk?
- Reducing your risk
 - Addressing your own specific risks, if any
 - Addressing general risk factors

Are you getting demented?

- Self-observations
- Observations by others (e.g., spouse, family members, co-workers)
- More objective testing
 - Mental status testing

Self-observations

- “Normal” memory is generally far from perfect
- The vast majority of times, subjective memory complaints and apparent problems are within the range of ‘normal,’ e.g.
 - Forgetting why you went to the refrigerator
 - Having a hard time with names (Proper nouns << nouns << verbs: “Mr. Baker” vs “baker” vs “bake”)

“Normally” imperfect mentation

- Often, even valid memory problems are the result of depression, sleep disturbance, change in situations, etc.
- There are many other reasons for “temporary” (< 6 month) changes in mentation (e.g., an operation)

Self-observation?

- Remembering you've forgotten requires memory and self-awareness
- Self-awareness is often impaired in the most common dementias
- So self-observation often unreliable

Online self-assessment

- E.g., Self Administered Gerocognitive Examination (SAGE) - Douglas W. Scharre, M.D.

[https://wexnermedical.osu.edu/brain-
spine-neuro/memory-disorders/sage](https://wexnermedical.osu.edu/brain-spine-neuro/memory-disorders/sage)

What are your risks?

- Unalterable factors influencing risk
 - Age
 - APOE- ϵ 4 (ApoE4) status (genetic)
 - Family history
 - Education
 - Gender
 - Ethnicity
- Potentially modifiable factors influencing risk
 - Specific medical conditions

APOE status

- APOE gene – each of us has 2 copies of the gene
- Gene comes in 3 different varieties: APOE- ϵ 2, APOE- ϵ 3, APOE- ϵ 4 (aka ApoE4)
- In Caucasians:
 - One APOE- ϵ 4: 3 x higher risk of AD
 - APOE- ϵ 4+APOE- ϵ 4: 8-12x higher risk of AD
- In African-Americans and other ethnic groups, risks unclear (data sparse)

Family history

- Specific to specific diseases:
 - Alzheimer's Disease
 - If a 1st degree relative (parent, sib, child) has had it, chances ~ 3 X increased
 - Seems to be independent of ApoE4 status
 - Parkinson's disease/Lewy Body Dementia
 - Some increase in risk
 - Frontotemporal dementias – genetics complex, but definite

Educational and vocational achievements

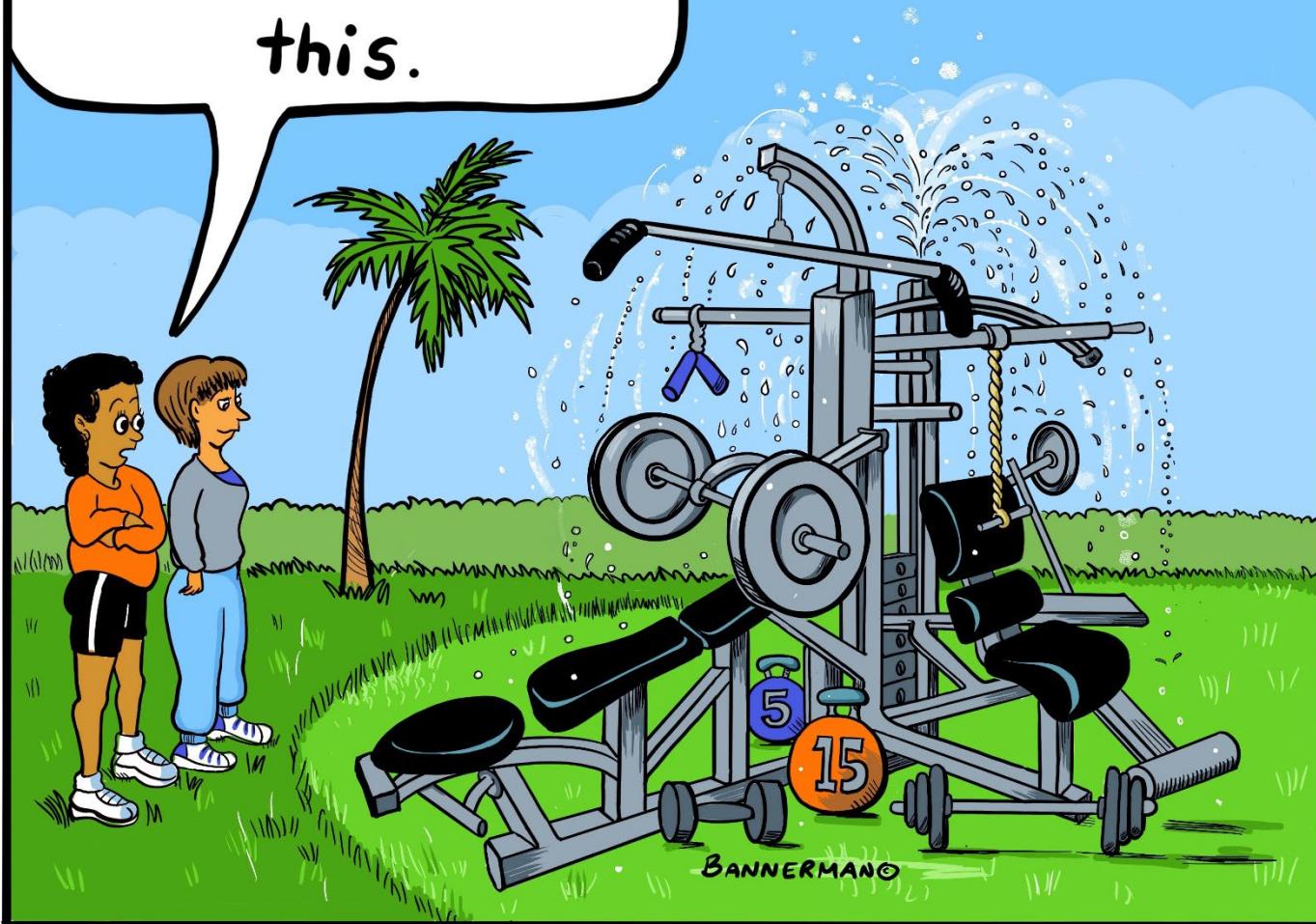
- Surrogate marker for how much cognitive reserve may be present

- So far, factors influencing your risk that you can't change
- Factors that you may be able to change:

Reducing your risk

- Reduce the big factors specific to you (e.g., hypertension)
- Improve the general factors that are currently thought to be important (e.g., aerobic fitness)

Reducing your risks as much as possible


- Hypertension
- Diabetes (? prediabetes ?)
- Hypercholesterolemia/hypertriglyceridemia, other cardiovascular risk factors
- Insufficient sleep
- Sleep apnea
- Smoking
- (excessive?) alcohol
- Hearing loss (deafness)
- Getting vaccinated (shingles)
- Your medications? (e.g., sedative drugs)
- Others? (e.g., visual impairment)

Improve what you can improve

- Aerobic fitness
- Intra-abdominal fat (metabolic syndrome)
- Strength training?
- (social engagement/mental engagement)
- (+/- mental training)
- Diet (e.g., the Mediterranean diet)
- Multivitamin supplements (see reference list)

The Fountain of Youth:

I had a feeling
it would look like
this.

Aerobic fitness

- Prevents or helps reduce cardiovascular disease and its attendant risks to the brain
- Has definite direct effects on the brain (mechanisms poorly understood, but seem to be even at the genetic level)
- (Reduced risks of heart attack, other vascular diseases)

Improve what you can improve

- Aerobic fitness
- Intra-abdominal fat (metabolic syndrome)
- Strength training?
- (social engagement/mental engagement)
- (+/- mental training)
- Diet (e.g., the Mediterranean diet)
- Multivitamin supplements (see reference list)

Improve what you can improve

- Ideally, treating specific risk factors, and improving general risk factors, should start in mid-life (if not before)
- However, the possibility that there is a threshold of brain dysfunction before dementia becomes overt, opens the possibility that even late and relatively small efforts could be beneficial

Critical step

- Modifying one's habits to make such life-style changes possible
 - See scholarly references at end
 - E.g., James Clear, *Atomic Habits*, 2018

Accessible further reading

- Alzheimer's Disease Association: www.alz.org
- Lewy Body Disease Association: www.lbda.org
- Some informative articles in the popular press:
 - 5 surprisingly hopeful things we learned about Alzheimer's this year - The Washington Post
 - What's my Alzheimer's risk, and can I really do anything to change it_ New Scientist
 - 8 things you can do to boost cognition and reduce dementia risk - The Washington Post
 - Alzheimer's Is One Form of Dementia. Here's What to Know About the Others. - The New York Times
 - A Different Type of Dementia is Changing What's Known About Cognitive Decline - The New York Times [LATE disease]

Accessible further reading (cont'd)

- Why people can have Alzheimer's-related brain damage but no symptoms – New Scientist, 30 January 2026
- A new mitochondrial theory of Alzheimer's deserves serious attention – New Scientist, 8 March 2023
- Note: the reference citations that follow may be available via Open Access, or through other servers that Google Scholar may suggest

Selected reference materials

Baker, L. D., Espeland, M. A., Whitmer, R. A., Snyder, H. M., Leng, X., Lovato, L., Papp, K. V., Yu, M., Kivipelto, M., Alexander, A. S., Antkowiak, S., Cleveland, M., Day, C., Elbein, R., Tomaszewski Farias, S., Felton, D., Garcia, K. R., Gitelman, D. R., Graef, S., ... Carrillo, M. C. (2025). Structured vs Self-Guided Multidomain Lifestyle Interventions for Global Cognitive Function: The US POINTER Randomized Clinical Trial. *JAMA*, 334(8), 681–691. <https://doi.org/10.1001/jama.2025.12923>

Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., Waters, C., Jimison, P., Shepherd, E., Sevush, S., Graff-Radford, N., Newland, D., Todd, M., Miller, B., Gold, M., Heilman, K., Doty, L., Goodman, I., Robinson, B., ... Duara, R. (2002). Relative Frequencies of Alzheimer Disease, Lewy Body, Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of Florida Brain Bank. *Alzheimer Disease & Associated Disorders*, 16(4), 203–212.

Barthélemy, N. R., Salvadó, G., Schindler, S. E., He, Y., Janelidze, S., Collij, L. E., Saef, B., Henson, R. L., Chen, C. D., Gordon, B. A., Li, Y., La Joie, R., Benzinger, T. L. S., Morris, J. C., Mattsson-Carlgren, N., Palmqvist, S., Ossenkoppele, R., Rabinovici, G. D., Stomrud, E., ... Hansson, O. (2024). Highly accurate blood test for Alzheimer's disease is similar or superior to clinical cerebrospinal fluid tests. *Nature Medicine*, 30(4), 1085–1095. <https://doi.org/10.1038/s41591-024-02869-z>

Boyle, P. A., Yu, L., Wilson, R. S., Leurgans, S. E., Schneider, J. A., & Bennett, D. A. (2018). Person-specific contribution of neuropathologies to cognitive loss in old age. *Annals of Neurology*, 83(1), 74–83. <https://doi.org/10.1002/ana.25123>

Charbit, J., Vidal, J.-S., & Hanon, O. (2025). Effects of Dietary Interventions on Cognitive Outcomes. *Nutrients*, 17(12), 1964. <https://doi.org/10.3390/nu17121964>

Clarfield, A. M. (2003). The Decreasing Prevalence of Reversible Dementias: An Updated Meta-analysis. *Archives of Internal Medicine*, 163(18), 2219–2229. <https://doi.org/10.1001/archinte.163.18.2219>

Crystal, H. A., Dickson, D., Davies, P., Masur, D., Grober, E., & Lipton, R. B. (2000). The Relative Frequency of “Dementia of Unknown Etiology” Increases With Age and Is Nearly 50% in Nonagenarians. *Archives of Neurology*, 57(5), 713–719. <https://doi.org/10.1001/archneur.57.5.713>

Selected reference materials

Daniyal, M., Tameez-ud-din, S., Khalid, M., Faiz, M., Abbas, N., & Javaid, M. H. (n.d.). Multivitamins and cognitive health in older adults: Bridging evidence, gaps, and controversies – a comprehensive narrative review. *Annals of Medicine and Surgery*, 10.1097/MS9.0000000000004720. <https://doi.org/10.1097/MS9.0000000000004720>

Dijkstra, J. I. R., Hulsman, M., Waterink, L., Holstege, H., Teunissen, C. E., Christiaansen, W. F. L., de Jong, B. A., Kochunov, P., Donohue, B., Zwan, M. D., den Braber, A., Vermunt, L., & van der Lee, S. J. (2025). Heritability and shared environmental effects of brain diseases in 12,040 extended families. *Npj Dementia*, 1(1), 34. <https://doi.org/10.1038/s44400-025-00030-2>

Fox, N. C., Belder, C., Ballard, C., Kales, H. C., Mummery, C., Caramelli, P., Ciccarelli, O., Frederiksen, K. S., Gomez-Isla, T., Ismail, Z., Paquet, C., Petersen, R. C., Perneczky, R., Robinson, L., Sayin, O., & Frisoni, G. B. (2025). Treatment for Alzheimer's disease. *The Lancet*, 406(10510), 1408–1423. [https://doi.org/10.1016/S0140-6736\(25\)01329-7](https://doi.org/10.1016/S0140-6736(25)01329-7)

Frisoni, G. B., Aho, E., Brayne, C., Ciccarelli, O., Dubois, B., Fox, N. C., Frederiksen, K. S., Gabay, C., Garibotto, V., Hofmarcher, T., Jack, C. R., Kivipelto, M., Petersen, R. C., Ribaldi, F., Rowe, C. C., Walsh, S., Zetterberg, H., & Hansson, O. (2025). Alzheimer's disease outlook: Controversies and future directions. *The Lancet*, 406(10510), 1424–1442. [https://doi.org/10.1016/S0140-6736\(25\)01389-3](https://doi.org/10.1016/S0140-6736(25)01389-3)

Frisoni, G. B., Hansson, O., Nichols, E., Garibotto, V., Schindler, S. E., Flier, W. M. van der, Jessen, F., Villain, N., Arenaza-Urquijo, E. M., Crivelli, L., Fortea, J., Grinberg, L. T., Ismail, Z., Minoshima, S., Ossenkoppele, R., Zetterberg, H., Petersen, R. C., & Dubois, B. (2025). New landscape of the diagnosis of Alzheimer's disease. *The Lancet*, 406(10510), 1389–1407. [https://doi.org/10.1016/S0140-6736\(25\)01294-2](https://doi.org/10.1016/S0140-6736(25)01294-2)

Gardner, B., Rebar, A. L., de Wit, S., & Lally, P. (2024). What is habit and how can it be used to change real-world behaviour? Narrowing the theory-reality gap. *Social and Personality Psychology Compass*, 18(6), e12975. <https://doi.org/10.1111/spc3.12975>

Klohs, J. (2020). An Integrated View on Vascular Dysfunction in Alzheimer's Disease. *Neurodegenerative Diseases*, 19(3–4), 109–127. <https://doi.org/10.1159/000505625>

Li, J., McPhillips, M. V., Deng, Z., Fan, F., & Spira, A. (2023). Daytime Napping and Cognitive Health in Older Adults: A Systematic Review. *The Journals of Gerontology Series A, Biological Sciences and Medical Sciences*, 78(10), 1853–1860. <https://doi.org/10.1093/gerona/glac239>

Selected reference materials

Livingston, G., Huntley, J., Liu, K. Y., Costafreda, S. G., Selbæk, G., Alladi, S., Ames, D., Banerjee, S., Burns, A., Brayne, C., Fox, N. C., Ferri, C. P., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Nakasujja, N., Rockwood, K., ... Mukadam, N. (2024). Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. *The Lancet*, 404(10452), 572–628. [https://doi.org/10.1016/S0140-6736\(24\)01296-0](https://doi.org/10.1016/S0140-6736(24)01296-0)

Lu, Y., Pike, J. R., Chen, J., Walker, K. A., Sullivan, K. J., Thyagarajan, B., Mielke, M. M., Lutsey, P. L., Knopman, D., Gottesman, R. F., Sharrett, A. R., Coresh, J., Mosley, T. H., & Palta, P. (2024). Changes in Alzheimer Disease Blood Biomarkers and Associations With Incident All-Cause Dementia. *JAMA*, 332(15), 1258–1269. <https://doi.org/10.1001/jama.2024.6619>

Luciano, M. G., Williams, M. A., Hamilton, M. G., Katzen, H. L., Dasher, N. A., Moghekar, A., Hua, J., Malm, J., Eklund, A., Abel, N. A., Raslan, A. M., Elder, B. D., Savage, J. J., Barrow, D. L., Shahlaie, K., Jensen, H., Zwimpfer, T. J., Wollett, J., Hanley, D. F., & Holubkov, R. (2025). A Randomized Trial of Shunting for Idiopathic Normal Pressure Hydrocephalus. *The New England Journal of Medicine*, 393(22), 2198–2209. <https://doi.org/10.1056/NEJMoa2503109>

Michaelson, D. M. (2014). APOE ε4: The most prevalent yet understudied risk factor for Alzheimer's disease. *Alzheimer's & Dementia*, 10(6), 861–868. <https://doi.org/10.1016/j.jalz.2014.06.015>

Olfson, M., Stroup, T. S., Huang, C., Wall, M. M., & Gerhard, T. (2020). Age and Incidence of Dementia Diagnosis. *Journal of General Internal Medicine*, 36(7), 2167. <https://doi.org/10.1007/s11606-020-05895-y>

Pimentel-Coelho, P. M., & Rivest, S. (2012). The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease. *European Journal of Neuroscience*, 35(12), 1917–1937. <https://doi.org/10.1111/j.1460-9568.2012.08126.x>

Power, M. C., Mormino, E., Soldan, A., James, B. D., Yu, L., Armstrong, N. M., Bangen, K. J., Delano-Wood, L., Lamar, M., Lim, Y. Y., Nudelman, K., Zahodne, L., Gross, A. L., Mungas, D., Widaman, K. F., & Schneider, J. (2018). Combined neuropathological pathways account for age-related risk of dementia. *Annals of Neurology*, 84(1), 10–22. <https://doi.org/10.1002/ana.25246>

Reuben, D. B., Kremen, S., & Maust, D. T. (2024). Dementia Prevention and Treatment: A Narrative Review. *JAMA Internal Medicine*, 184(5), 563–572. <https://doi.org/10.1001/jamainternmed.2023.8522>

Selected reference materials

Rohde, S. K., Luimes, M. C., Lorenz, L. M. C., Fierro-Hernández, P., Rozemuller, A. J. M., Hulsman, M., Zhang, M., Graat, M. J. I., van der Hoorn, M. E., Daatselaar, D. A. H., Scheltens, P., Richardson, T. E., Walker, J. M., Sikkes, S. A. M., Hoozemans, J. J. M., & Holstege, H. (2025). Amyloid-Beta Pathology and Cognitive Performance in Centenarians. *JAMA Neurology*, 82(8), 837–847. <https://doi.org/10.1001/jamaneurol.2025.1734>

Salloway, S., Rowe, C., & Burns, J. M. (2024). Are Blood Tests for Alzheimer Disease Ready for Prime Time? *JAMA*, 332(15), 1240–1241. <https://doi.org/10.1001/jama.2024.12814>

Sarhan, M., Wohlfeld, C., Perry-Mills, A., Meyers, J., Fadel, J., Murphy, E. A., Bonilha, L., & Fan, D. (2025). The pathophysiology of mixed Alzheimer's disease and vascular dementia. *Theranostics*, 15(18), 9793–9818. <https://doi.org/10.7150/thno.118737>

Schindler, S. E., Petersen, K. K., Saef, B., Tosun, D., Shaw, L. M., Zetterberg, H., Dage, J. L., Ferber, K., Triana-Baltzer, G., Du-Cuny, L., Li, Y., Coomaraswamy, J., Baratta, M., Mordashova, Y., Saad, Z. S., Raunig, D. L., Ashton, N. J., Meyers, E. A., Rubel, C. E., ... Alzheimer's Disease Neuroimaging Initiative (ADNI) Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium Plasma A β and Phosphorylated Tau as Predictors of Amyloid and Tau Positivity in Alzheimer's Disease Project Team. (2024). Head-to-head comparison of leading blood tests for Alzheimer's disease pathology. *Alzheimer's & Dementia*, 20(11), 8074–8096. <https://doi.org/10.1002/alz.14315>

Van Der Lee, S. J., Hulsman, M., Van Spaendonk, R., Van Der Schaar, J., Dijkstra, J., Tesi, N., van Ruissen, F., Elting, M., Reinders, M., De Rojas, I., Verschuren-Bemelmans, C. C., Van Der Flier, W. M., van Haelst, M. M., de Geus, C., Pijnenburg, Y., & Holstege, H. (2025). Prevalence of Pathogenic Variants and Eligibility Criteria for Genetic Testing in Patients Who Visit a Memory Clinic. *Neurology*, 104(4), e210273. <https://doi.org/10.1212/WNL.00000000000210273>

Verplanken, B., & Orbell, S. (2022). Attitudes, Habits, and Behavior Change. *Annual Review of Psychology*, 73(Volume 73, 2022), 327–352. <https://doi.org/10.1146/annurev-psych-020821-011744>

Wolk, D. A., Nelson, P. T., Apostolova, L., Arfanakis, K., Boyle, P. A., Carlsson, C. M., Corriveau-Lecavalier, N., Dacks, P., Dickerson, B. C., Domoto-Reilly, K., Dugger, B. N., Edelmayer, R., Fardo, D. W., Grothe, M. J., Hohman, T. J., Irwin, D. J., Jicha, G. A., Jones, D. T., Kawas, C. H., ... Schneider, J. A. (2025). Clinical criteria for limbic-predominant age-related TDP-43 encephalopathy. *Alzheimer's & Dementia*, 21(1), e14202. <https://doi.org/10.1002/alz.14202>

Yeung, L.-K., Alschuler, D. M., Wall, M., Luttmann-Gibson, H., Copeland, T., Hale, C., Sloan, R. P., Sesso, H. D., Manson, J. E., & Brickman, A. M. (2023). Multivitamin Supplementation Improves Memory in Older Adults: A Randomized Clinical Trial. *The American Journal of Clinical Nutrition*, 118(1), 273–282. <https://doi.org/10.1016/j.ajcnut.2023.05.011>

Acknowledgements

- Cartoon reproduced and distributed with permission: Isabella Bannerman at www.cartoonstock.com
- My water tank graphics of the possible threshold effect were produced using ChatGPT 5.2

Questions? (maybe answers)

- bgordonmd@gmail.com

